Shan-and-Chen-type multiphase lattice Boltzmann study of viscous coupling effects for two-phase flow in porous media

نویسندگان

  • Haibo Huang
  • Zhitao Li
  • Shuaishuai Liu
  • Xi-yun Lu
چکیده

In this paper, the Shan–Chen-type (SC) multiphase lattice Boltzmann model was used to study the viscous coupling effects for immiscible two-phase flow in porous media. In the model, any typical equation of state can be incorporated and different contact angles of the gas–liquid interface at a solid wall can be obtained easily through adjusting the ‘density of wall’ (Benzi et al., Phys. Rev. E 2006; 74(2):021509). The viscous coupling effects due to capillary number, the viscosity ratio and the wetting angle were investigated. The two-phase flows with density ratio as high as 56 in porous media were simulated. For different viscosity ratios and wettability, two-phase flow patterns and relative-permeability curves as a function of wetting saturation were obtained. It is observed that when the wetting phase is less viscous and covers the solid surface, the relative permeability of the non-wetting phase may be greater than unity. Here, the SC model is demonstrated as a suitable tool to study the immiscible two-phase flow in porous media because it is simple, easy to get the desired contact angle and able to simulate immiscible phase flow with high-density ratio. Copyright q 2008 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gas-liquid Relative Permeability Estimation in 2D Porous Media by Lattice Boltzmann Method: Low Viscosity Ratio 2D LBM Relative Permeability

This work is a primary achievement in studying the CO2 and N2–oil systems. To predict gas-liquid relative permeability curves, a Shan-Chen type multicomponent multiphase lattice Boltzmann model for two-phase flow through 2D porous media is developed. Periodic and bounce back boundary conditions are applied to the model with the Guo scheme for the external body force (i.e.,...

متن کامل

Arterial Blood Flow Blockage Time Due to an Interaction between a Foreign Second Phase and an Externally Originated Particle

A huge number of deaths in the world are the direct or indirect consequence of a disease which is called atherosclerosis. The disease could be due to an artery blockage by the interaction of an externally second phase with a particle which is entered to the bloodstream. The effect of some most important physical and geometrical affecting parameters on the blockage time of a microchannel due to ...

متن کامل

Using Lattice Boltzmann Method to Investigate the Effects of Porous Media on Heat Transfer from Solid Block inside a Channel

A numerical investigation of forced convection in a channel with hot solid block inside a square porous block mounted on a bottom wall was carried out. The lattice Boltzmann method was applied for numerical simulations. The fluid flow in the porous media was simulated by Brinkman-Forchheimer model. The effects of parameters such as porosity and thermal conductivity ratio over flow pattern and t...

متن کامل

Investigation of pore-scale random porous media using lattice boltzmann method

The permeability and tortuosity of pore-scale two and three-dimensional random porous media were calculated using the Lattice Boltzmann method (LBM). Effects of geometrical parameters of medium on permeability and tortuosity were investigated as well. Two major models of random porous media were reconstructed by computerized tomography method: Randomly distributed rectangular obstacles in a uni...

متن کامل

Evaluation of three lattice Boltzmann models for multiphase flows in porous media

A free energy (FE) model, the Shan–Chen (S–C) model, and the Rothman and Keller (R–K) model are studied numerically to evaluate their performance inmodeling two-dimensional (2D) immiscible two-phase flow in porous media on the pore scale. The FEmodel is proved to satisfy the Galilean invariance through a numerical test and the mass conservation of each component in the simulations is exact. Two...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008